If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=32
We move all terms to the left:
w^2-(32)=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $
| 240+130x5=125+155 | | 12x-4=100-2x | | -3(y+8)+3=9 | | 2(f+-7)+9=5 | | -17=-2+3z | | 4w-5w=17w= | | 16-x=5x+12-2x=24-x | | 6x^2-3=5 | | 3h+-5=-20 | | d/2+-6=-8 | | 10(s-10)=-145 | | 2+4(x+2)=-40 | | 1/4x-5/6=1/2x+1/3 | | 15=18-h | | 8s-3s-2=18 | | 3(v-13)+5=17 | | 9a+24=-3a | | 3(s-4)+1=10 | | 8=q/8 | | z+3+4=5 | | -3(g-9)+4=4 | | -6(3-n)+3n=-81 | | 2(r-46)=72 | | 8(4s+3)=312 | | 2=b/2–1 | | (s+23)/7=4 | | -2=-2(g-8) | | x²+2x+2=0 | | 12+20f=132 | | -2t+4=-2 | | 36z=720 | | d+4/2=0 |